

Trajectory Reconstruction for the Genesis Entry

Prasun Desai
Garry Qualls
Mark Schoenenberger
NASA Langley Research Center

June 28, 2005

Genesis Mission Background

- Fifth Discovery mission
 - Launched on August 8, 2001
 - Inserted in to a halo orbit about the sun-Earth libration point (L1)
 - Collected solar wind particles for ~29 months
 - First mission to return samples from beyond the Earth-moon system
- Maneuver and targeting procedures placed capsule on desired entry flight-path on morning of September 8, 2004 at 15:52:47 UTC

Genesis Entry Live!

NASA Langley Research Center

Capsule mass = 205.6 kg

Genesis Entry Live!

NASA Langley Research Center

QuickTime™ and a decompressor are needed to see this picture.

Genesis Nominal Entry Sequence

Genesis Impact Location

Genesis Reconstruction Effort

- Genesis capsule landed very close to the desired target
 - Understanding hypersonic flight performance is of great interest
 - Specifically, assessing how the pre-entry predictions of flight dynamics, aerodynamics, and aerothermodynamics
 - Identify Mach number for onset of capsule tumble
- Only limited data exists to perform reconstruction
 - No onboard sensors on capsule
 - Only available data source is from UTTR radar tracking stations
 - Video and tracking data
 - Balloon measurement of atmospheric properties up to 34 km four hours prior to entry

Density Comparison to GRAM Model

NASA Langley Research Center

 Global Reference Atmosphere Model (GRAM) used for pre-entry prediction

Density Comparison to GRAM Model (cont'd)

- Variation of $\pm 2.5\%$ observed on entry day
- Corresponds to ~ 1.5 - σ profile from GRAM variations

Wind Comparison to GRAM Model

NASA Langley Research Center

• Variation of ± 5 m/sec observed on entry day

Wind Comparison to GRAM Model (cont'd)

- Sustained wind to the East observed (~27 m/sec at 12 km)
- Corresponds to ~ 1.5 - σ profile from GRAM variations

Capsule Luminance from Infrared Video

Frequency Contours of Luminance Data

Capsule Luminance from Infrared Video

NASA Langley Research Center

Onset of tumble at Mach 0.9

Pre-Entry Simulation Capsule Attitude Prediction

NASA Langley Research Center

• Results from video analysis and use of trajectory simulation help corroborate capsule aerodynamics in supersonic regime (Mach 2.2 - 1.0)

Capsule Deceleration Comparison (Supersonic Regime)

- Timelines of simulation and tracking data aligned at Mach 1
- Good agreement indicates aerodynamic database accurately captures capsule drag

Capsule Frequency Comparison (Supersonic Regime)

NASA Langley Research Center

 Dominant frequency correlate well over range were data is available

Capsule Static Stability Assessment (Supersonic Regime)

NASA Langley Research Center

• With confidence in oscillation frequency, an assessment of capsule static stability can be made since

Freq \propto dynamic pressure*(pitching moment slope)^{0.5}

- Appears to be good agreement between measured data and pre-entry predicted dynamics pressure variation
 - Assertion depends on agreement between predicted drag and measured drag and agreement of density profile
 - Accuracy of drag shown by comparison of deceleration profile
 - Balloon measured density profile shown to be within ±2.5% of pre-entry profile
- Consequently, agreement of frequencies indicates aerodynamics database reasonably predicted static stability

Hypersonic Capsule Attitude Assessment

- Since there was no onboard sensor data, capsule hypersonic attitude cannot be determined
 - Attitude must be inferred from observation of recovered heatshield
- There is very little, if any, charring of the shoulder region or aftbody of TPS
 - Inspection of forebody shows charring patterns that imply symmetry heating
 - Observations suggest that attitude must have been only a few degrees
 - Angle-of-attack is estimated to be no larger than $2.1^{\circ} \pm 1.4^{\circ}$
 - Pre-entry simulation predicted angle-of-attack of 1.38 ° with a maximum of 3°
- Overall observations support the assertion that the aerodynamics database reasonably predicted hypersonic static stability

Capsule Shoulder and Aftbody Region

Capsule Forebody Heatshield

Phosphor Thermography Tunnel Tests

Trajectory Reconstruction

- Since there was no onboard sensor data, a "traditional" trajectory reconstruction could not be performed
 - Therefore, a Best Estimated Trajectory (BET) is calculated
- The BET is split into two phases: hypersonic and subsonic flight
- For hypersonic flight, only two data sources were available
 - Final Navigation entry state at atmospheric interface
 - Latitude and longitude data from UTTR radar tracking stations at the pre-entry predicted drogue deployment time
 - UTTR radar tracking stations acquired capsule from 34 km through impact
- With confidence in these two endpoints, a hypersonic trajectory is calculated using the pre-entry simulation

Trajectory Reconstruction (cont'd)

- Within the trajectory simulation, a multiplier on capsule drag was applied as the control parameter to determine the variation needed to patch the two endpoint conditions
 - An drag reduction of 8.1% is calculated
 - Altitude is within 380 m between simulation and tracking data
- The 8.1% reduction in drag can arise form multiple sources
 - Mis-prediction in entry state, capsule C_D, or atmospheric density
 - Final entry state was confirmed to be extremely accurate by STRATCOM
 - No measure of density available above 34 km
 - So, relative contributions between density and C_D cannot be determined
- However, an estimate for the hypersonic density can be approximated if an uncertainty in capsule C_D is assumed

Trajectory Reconstruction (cont'd)

NASA Langley Research Center

- Typical C_D uncertainty in the hypersonic regime is ± 4 (3- σ)
 - If a capsule C_D is assumed to be 1.5% low (a 1- σ occurrence), an estimate of atmospheric density above 34 km can be calculated
- With such an assumption, the atmospheric density encountered during the hypersonic flight can be approximated to be 6.6% lower than the pre-entry profile from GRAM
 - This estimate corresponds to $1.5-\sigma$ low profile from the GRAM variations

• Process for subsonic trajectory estimate is described in the paper

Genesis Best Estimated Trajectory

Summary

- An overview of the reconstruction analyses is described
- Atmosphere (density and winds) encountered during the entry were approximately 1-σ profiles
- Analysis on infrared video footage estimated the onset of capsule tumble at Mach 0.9
- Observations of the recovered heatshield indicated small attitude during hypersonic flight
- Overall assertion is that the Genesis entry flight performance was close to the nominal pre-entry predictions
- Consequently, the design principles and methodologies utilized for the flight dynamics, aerodynamics, and aerothermodynamics analyses were corroborated